1. Здесь образуются два подобных (по трем углам) треугольника (большой и малый). Для них можно записать соотношение:
1,7/4 = х/8+4
откуда
х = 1,7/4 * 12 = 3 * 1,7 = 5,1
ответ: 5,1
2. 0,5 * 4=2 метра
3.Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE.
Эти треугольники подобны, т.к.:
∠C - общий,
∠B и ∠DEC - прямые,
углы A и EDC - равны, так как являются соответственными.
Из подобия этих треугольников следует, что:
AB/DE=BC/EC
BC=(AB*EC)/DE=(9*1)/2=4,5.
В задаче нас интересует отрезок BE, BE=BC-EC=4,5-1=3,5.
ответ: 3,5
Объяснение:
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
6=( а+2а):2
а+2а=12
3а=12 ⇒ а=12:3=4
Меньшее основание трапеции равно 4 см.
Большее 4•2=8 см