18_03_09_Задание № 7:
Диагональ трапеции делит её на два подобных между собой треугольника. Отношение боковых сторон трапеции равно 2. Найдите отношение большего основания трапеции к её меньшему основанию.
РЕШЕНИЕ: Пусть в трапеции ABCD такой диагональю является BD. Тогда накрест лежащие углы CBD и ADВ равны.
Так как в трапеции противолежащие углы не равны, то другие пары равных углов это ABD=BCD и BAD=BDC.
Отношение пропорциональных сторон: АВ/CD=AD/BD=BD/BC=2
Выразим из второй части: AD/BD=2, AD=2BD
Выразим из третьей части: BD/BC=2, BD=2BC
Подставляем: AD=2*2BC=4BC. Значит AD/BC=4.
ОТВЕТ: 4:1
Дано:
OO₁ = 15см
α = 120°
ON = 4cм
Найти:
S - ?
из ΔAOB: α = O = 120°, A = B = β = (180° - 120°) / 2 = 30°
(BO = AO = R => тр-к равнобедренный => углы при основании равны)
из ΔNOB: NB = ctgβ ON = √3 ON = 4√3 см
AB = 2 NB = 8√3 см; AC = OO₁
S = AB * AC = 8√3 см * 15 см = 120√3 см²