Рассказываю. Можете брать в руки инструменты :)))
1.Где то рисуем на плоскости ту сторону, К которой проведена высота. Используя один из его концов, как центр, рисуем окружность, радиус которой равен другой стороне. Не жадничайте, нарисуйте всю окружность.
2.Теперь вдоль стороны, К которой проведена высота, от ТОЙ ЖЕ вершины, то есть от центра окружности откладываем высоту и в полученной точке проводим препендикуляр до пересечения с окружностью.
3.Вот теперь БЕРЕМ ЭТОТ перпендикуляр (между стороной и окружностью) и ОПЯТЬ откладываем от ТОЙ ЖЕ точки вдоль той же стороны. Проводим через полученную точку перпендикуляр до пересечения с окружностью, получаем ТРЕТЬЮ ВЕРШИНУ треугольника.
Всё, что вам надо понять - почему этот последний перпендикуляр равен высоте. Но вообще то это по построению элементарно видно - сумма квадартов высоты и вс отрезка (полученного в пунте 2.) равна квадрату радиуса, то есть мы 2 раза построили одинаковые прямоугольные треугольники. Всё.
Вся идея построения базируется на простом соотношении между длинной хорды и расстоянием от неё до центра окружности.
Решение.
CD параллельна АВ, следовательно, параллельна плоскости альфа, в которой лежит АВ.
Все точки прямой, параллельной плоскости, удалены от нее на равное расстояние. ⇒ точка С находится на том же расстоянии от плоскости, что и точка D, т.е. на расстоянии а/2.
Угол между плоскостью ромба и плоскостью альфа - двугранный.
Двугранный угол - это часть пространства, заключённая между двумя полуплоскостями, имеющими общую границу.
Линейным углом двугранного угла называется угол между двумя перпендикулярами к ребру двугранного угла, лежащими в гранях двугранного угла и имеющими на ребре общее начало.
Из любой точки ребра двугранного угла можно провести линейный угол, и все эти углы будут равны между собой.
Так как острый угол ромба равен 60°, его диагональ ВD делит ромб на два равносторонних треугольника. DK - высота треугольника (и высота ромба), перпендикулярна АВ, ⇒
DK=(а√3)/2
Проекция отрезка DK перпендикулярна АВ, т.е. KN⊥AB по теореме о трех перпендикулярах.
Синус угла угла DKN между плоскостью ромба и плоскостью альфа - это отношение между отрезком DN и высотой DK ромба.
sin DKN=DN:DK
Угол НВМ=углу DKN.
sin DKN=a/2:(а√3)/2=1/√3
sin НВМ=1/√3