Объяснение:
Дано:
P = 45 см
AD = 6 см
DC = 9 см
____________
a - ?
b - ?
c - ?
Сразу:
b = AD + DC = 6 + 9 = 15 см
Найдем отношение (свойство биссектрисы угла в треугольнике):
AD / DC = AB / BC
6 / 9 = c / a
a = 9*c/6 = 1,5*c
Периметр:
P = a+b+c
45 = 1,5*c + 15 + c
2,5*c = 45 - 15
2,5*c = 30
c = 30 / 2,5 = 12 см
a = 1,5*c = 1,5*12 = 18 см
Около окружности радиуса 4√3 см описан правильный треугольник .На его высоте как на стороне построен правильный шестиугольник , в который вписана другая окружность. Найдите ее радиус.
Объяснение:
Обозначим радиус вписанной в треугольник окружности r₃=4√3 см. Найдем 1)сторону правильного треугольника ;2) и его высоту :
a₃ = 2r √3 , a₃ = 2*4√3*√3=24 (см). Тогда половина стороны 12 см.
По т. Пифагора высота правильного треугольника
h₃=√(24²-12²)=12√3 (см) ⇒ по условию это сторона правильного шестиугольника а=12√3 см.
Найдем радиус вписанной окружности в правильный шестиугольник
r=(а√3)/2 , r=( 12√3* √3)/2 =18 (см)
Примечание Высота в правильном треугольнике является медианой.
254. В правильной Треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основа
254. В правильной Треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основанием пирамиды; д) двугранный угол при боковом ребре пирамиды.
а) PO — высота пирамиды PABC. Радиус R описанной вокруг правильного треугольника окружности равен
поэтому
б)
высота, а следовательно, и медиана. Поэтому
следовательно
Значит,
в) Искомый угол - это ∠PBO.
решение представлено на фото
Объяснение: