Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Тут важно знать след. особенность: во всех прямоугольных треугольниках медиана, опущенная на гипотенузу, равна половине гипотенузы. Вычислить площадь треугольника, в данном случае, можно произведением половины высоты на гипотенузу. Осталось найти медиану. Высота и медиана образуют катет и гипотенузу прямоугольного треугольника соответственно. Тогда, зная катет этого треугольника (7см), по теореме Пифагора:
Значит, гипотенуза исходного треугольника равна 2*25=50см. Найдем площадь:
N zn