62,5 т
Объяснение:
1) Переводим размеры на плане в действительные размеры.
В 1 см на карте, согласно условию задачи, 500 см. Значит:
а) длина улицы = 100 * 500 = 50 000 см, или
50 000 : 100 (т.к. в одном метре 100 см) = 50 метров;
б) ширина проезжей части улицы = 5 * 100 = 500 см;
500 : 100 = 5 метров.
2) Рассчитаем, чего равна площадь проезжей дороги в метрах квадратных. У нас прямоугольник 50 метров в длину и 5 метров в ширину. Площадь этого прямоугольника, который надо заасфальтировать, равна = 50 * 5 = 250 метров квадратных.
3) Т.к. на каждый метр квадратный дороги необходимо 250 кг асфальта, то 250 метров квадратных потребуется:
250 * 250 = 62 500 кг асфальта.
ответ лучше выразить в тоннах.
1 тонна - это 1000 кг.
62 500 : 1000 = 62,5 тонны - столько асфальта потребуется для того, чтобы заасфальтировать проезжую часть дороги длиной 50 метров и шириной 5 метров.
ответ: 62,5 т
Дано : ΔABC остроугольный
AK ⊥ BC ; BD ⊥ AC ; AH =BC , H = AK ∩ BD ( H - точка пересечения высот)
∠BAC -?
ответ: 45° .
Объяснение:
Прямоугольные треугольники HDA и CDB равны ( третий признак равенства _ по гипотенузе и острому углу )
ΔHDA = ΔCDB
* * * ∠HDA = ∠BDC = 90 ° * * *
AH = BC ( гипотенузы по условию )
∠AHD =∠BCD углы со взаимно перпендикулярными сторонами : AH⊥ BC ; HD ⊥ AC (снова по условию) ,
следовательно AD = BD , т.е. прямоугольный треугольник ΔADB равнобедренный ⇒∠BAC = ∠ABC = 45° .
( ! Равенство второго пара катетов: HD = CD можно использовать при построения правильного чертежа. )
* * * Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны ( аналог второго признака равенства для "обычных "треугольников" ) * * *
* * * AK ⊥ BC ⇔ AH⊥ BC ; BD ⊥ AC ⇔ HD ⊥ AC ))) * * *
а что сделать то нужно ?