ответ: 90° и 36°
Объяснение: Очевидно, что для составления из двух равнобедренных треугольников другого, нужно:
чтобы их боковые стороны были равны; чтобы угол одного при составлении дополнял до развернутого угла угол другого (В противном случае получится четырехугольник).Возможны два варианта решения.
1. Такой треугольник можно составить из равных равнобедренных прямоугольных треугольников Их острые углы равны 45°, и угол между боковым сторонами нового треугольника будет 90°. ( см. рисунок вложения)
2. Обозначим исходные треугольники АВЕ и АСЕ ( АЕ=ВЕ и АЕ=АС). В новом треугольнике АВС АВ=ВС, углы при АС равны. Угол при С общий для обоих треугольников. Треугольники АСЕ и АВС подобны по равным углам при АС. поэтому угол САЕ=углу АВС.
Примем угол АВЕ=ВАЕ= х, тогда угол ВЕА=180°-2х.
=> Смежный с ним угол АЕС=2х, равный ему угол ЕСА=АЕС=2х. В ∆ АВС сумма углов В+А+С=х+2х+2х=180°
5х=180° => х=180°:5=36°
дано: v(ц)=106π, a = 45°, k = 5√2
найти: v(пр) - ?
решение:
диагональ боковой грани призмы принадлежит самой бокой грани. а боковая грань в свою очередь касается поверхности цилиндра, поэтому расстояние между осью цилиндра и диагональю боковой грани - это есть радиус цилиндра.
k = r.
объем призмы находится по формуле:
v(пр) = s*h
найдем высоту.
v(ц) = π*r^2*h
h = v(ц) / π*r^2 =106π / 50π = 2,12
найдем площадь ромба:
s = 4r^2 / sina = 4*25*2/ sin45 = 50√2
v(пр) = s * h = 2,12 * 50√2 = 106√2
ответ: 106√2