4.51 . известно , что первая координата ( абсцисса ) точки с , лежащей на прямой ав , равна 5. найдите вторую координату точки с , если а ( -8 ; -6 ) и в ( -31 ; -1 ) .
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
1) Находим на что разделяет биссектриса каждый угол, первый - на 15, второй - на 35. Теперь складываем 15+35=50. Это угол между биссектрисами. 2) Пусть одна часть х, тогда один угол будет 2х, а другой 17х. Получаем уравнение: 2х+17х=180 19х=180 х=180/19 Больший угол = 17* 180/19=161 1/19. Странный ответ, ну да ладно. 3) две прямые образуют угол в 360 градусов. Пусть неизвестный угол х, получаем уравнение: х+240=360 х=100. При пересечении образуются попарно равные углы, значит два изх них будут по 100, а два других по 140/2=70
Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.