Відповідь:
Пояснення:
Щоб знайти периметр прямокутної трапеції, в яку вписано коло, треба знати її властивості. У такій трапеції 1) сума бокових сторін дорівнює сумі основ, 2) якщо точки дотику ділять бокову сторону на відрізки m i n, то r=√mn 3) менша бокова сторона дорівнює діаметру кола.
r=√18*8=12, отже менша бічна сторона = 12*2=24 см.
Більша бічна сторона = 8+18=26 см.
Сума бічних сторін=24+26=50 см.
Сума основ = сумі бічних сторін=50 см.
Периметр трапеції=50+50=100 см.
Відповідь: 100 см
Детальніше - на -
Відповідь:
Пояснення:
Щоб знайти периметр прямокутної трапеції, в яку вписано коло, треба знати її властивості. У такій трапеції 1) сума бокових сторін дорівнює сумі основ, 2) якщо точки дотику ділять бокову сторону на відрізки m i n, то r=√mn 3) менша бокова сторона дорівнює діаметру кола.
r=√18*8=12, отже менша бічна сторона = 12*2=24 см.
Більша бічна сторона = 8+18=26 см.
Сума бічних сторін=24+26=50 см.
Сума основ = сумі бічних сторін=50 см.
Периметр трапеції=50+50=100 см.
Відповідь: 100 см
Детальніше - на -
В трапецию вписан круг с центром О диаметром D=15. Т.к. высота трапеции ВН совпадает с диаметром вписанной окружности, то ВН=15.
Окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон:
АВ+СД=АД+ВС
АД+ВС=2*17=34
Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(289-225)=√64=8.
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.
Значит АН=(АД-ВС)/2
АД-ВС=2АН=2*8=16
Получается система уравнений:
АД+ВС=34
АД-ВС=16
2АД=50
АД=25