а)Так как Площадь сечения - энто треугольник. Причем равнобедренный, причем с вершиной равный 60 градусов. Значит равносторонний треугольник. Так как основание - диаметр конуса и равна соответственно 12 как и все остальные стороны. Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =) Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108. Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б) Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =) Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2 S1 = п 6 (6 + 12) = 108 п S2 = п 6^2 = п 36 S = 72 п
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются. а) докажите, что АВ параллельна СD. б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются. Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых. Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD. Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости. Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями) Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны. АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD. б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм. Противоположные углы параллелограмма равны. Сумма углов, прилежащих к одной стороне параллелограмма, равна 180° Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°——— [email protected]
CD^2=AD^2+AC^2-2*AC*AD*cosA
100=625+225-2*25*15*cosA; cosA=1
AB^2=BC^2+AC^2-2*AC*BC*cosC;
36=81+225-2*9*15*cosC; cosC=1
ето трапеция :))