1 — неправильно. Бывают ситуации, что у них углы равны между собой, но длины их сторон разные, но они при этом пропорциональны. Такие треугольники называются подобными. 2 — неверно, такой отрезок называется радиусом, а диаметр — хорда, проходящая через центр окружности. 3 — верно, в равнобедренном треугольнике биссектриса, проведённая к основанию, является и медианой, и высотой этого треугольника. 4 — верно, многие об этом знают, если вы ,конечно, читали определение этой фигуры. 5 — верно, это все-таки смежные углы. 6 — неверно, в равнобедренном треугольнике он обязан лежать на противолежащей основанию вершине. 7 — нет, сумма смежных углов равна 180° и по определению острый угл — угл, который меньше угла в 90°. Значит угл смежный острому должен быть тупым. 8 — нет. Прямые могут иметь одну общую точку, но есть ещё прямые, которые совпадают между собой и прямые, не имеющие ни одной общей точки(параллельные прямые).
АР=ТД= (АД-ВС)/2=3 м Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы) Дальше решим через теорему косинусов: ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м. ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
2 — неверно, такой отрезок называется радиусом, а диаметр — хорда, проходящая через центр окружности.
3 — верно, в равнобедренном треугольнике биссектриса, проведённая к основанию, является и медианой, и высотой этого треугольника.
4 — верно, многие об этом знают, если вы ,конечно, читали определение этой фигуры.
5 — верно, это все-таки смежные углы.
6 — неверно, в равнобедренном треугольнике он обязан лежать на противолежащей основанию вершине.
7 — нет, сумма смежных углов равна 180° и по определению острый угл — угл, который меньше угла в 90°. Значит угл смежный острому должен быть тупым.
8 — нет. Прямые могут иметь одну общую точку, но есть ещё прямые, которые совпадают между собой и прямые, не имеющие ни одной общей точки(параллельные прямые).