Дано:
ΔАВС
окр. (О; ОС)
дуга ВС : дуга АС : дуга АВ = 3 : 7 : 8
ВС = 20
Найти: ОС.
Пусть k - одна часть, тогда дуга ВС = 3k, дуга АС = 7k, дуга АВ = 8k. Т.к. в окружности 360°, то составим и решим уравнение:
3k + 7k + 8k = 360;
18k = 360;
k = 20.
Найдем дугу ВС: дуга ВС = 3 * 20 = 60°.
∠ВОС - центральный, опирается на дугу ВС, значит ∠ВОС = 60°.
ΔВОС - равнобедренный, т.к. ОВ = ОС (радиусы), по свойству углов в равнобедренном треугольнике ∠ОВС = ∠ОСВ = (180° - ∠ВОС) : 2 = (180° - 60°) : 2 = 60°.
Следовательно, ΔВОС - равносторонний и ОС = ОВ = ВС = 20.
ответ: 20.
Объяснение:
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9