ответ: 64 см.
Объяснение: Малая диагональ делит ромб с углами A/B/C/D на 2 треугольника с противоположными углами 60°. Обозначим их A и C. Вычтя из 360°- 60°- 60°= 240° получим сумму 2-х других углов B и D. Поделив 240°/ 2 = 120° находим величину B и D второй пары противоположных углов. Малая диагональ является биссектрисой углов B и D и делит их пополам - 120°/ 2 = 60°. Отсюда все углы треугольников ABD и CDB равны 60°. Диагональ DB является общей стороной равносторонних треугольников ABD и CDB и равна 16 см Значит все стороны ромба равны 16 см. Периметр равен 16 × 4 = 64 см.
a) Центр окружности
х=(7-1)/2=3
у=(-2-4)/2=-3
О(3;-3)
Длина ОА равна радиусу и равна √((7-3)²+(-2+3)²)=√17
b) Уравнение окружности
(х-3)²+(у+3)²=17