A1.
Sшестиугольника =
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
Для ΔA₁B₁C₁ радиус высоты
⇒
⇒
Для ΔABC радиус R = высоты
:
⇒
⇒
Найдем соотношение периметров и площадей:
ответ: 75см; 10см; 20см; 12см; 18см; 24см
Объяснение:
3.
1) Находим сторону АС:
АС=АВ*2=17*2=34см
2) Находим сторону ВС:
ВС=АС-10=34=10=24см
3) Находим периметр треугольника АВС:
17+34+24=75см
4.
1) Находим сумму двух других сторон треугольника:
48-18=30см
Примем меньшую сторону за х, тогда большая сторона будет: х+10
2) Составим уравнение:
х+х+10=30
2х=20
х=10 см - это меньшая сторона
Большая сторона равна: 10+10=20см
5.
1) Примем стороны треугольника за 2, 3 и 4 части.
2) Находим из скольких частей состоит периметр треугольника:
2+3+4=9
3) Находим какая длина приходится на одну часть:
54/9=6см
4) Находим стороны треугольника:
6*2=12см
6*3=18см
6*4=24см