и прямоугольник EBFG. Вершины B прямоугольника и квадрата совпадают. Сразу оговоримся, что именование вершин фигур начинается с левого верхнего угла и продолжается по порядку по часовой стрелке.
Нам известно что AB = BC = CD = DA = 10 см., EB = FG = 3см., BF = GE = 4 см.
Тогда от сюда следует что новая фигура, образовавшаяся после выреза прямоугольника (AEGFCD) будет иметь следующие размеры:
Боковая грань перпендикулярная основанию - равнобедренный треугольник с высотой Н = 12 см - высота пирамиды и разбивает грань на два прямоугольных треугольника с катетом Н = 12 см и острым углом 60
В прямоугольном треугольнике с катетом 12 см и противолежащим углом tg 60 =
a =
a = = 4√3 - половина стороны основания равностороннего треугольника
Площадь правильного треугольника (основания) со стороной 2а = 2 * 4√3 = 8 * 4√3 и высотой h = = √144 = 12
S = * 8√3 * 12 = 48√3 см²
Объем пирамиды с высотой H = 12 см и площадью основания S = 48√3 см²
Пусть у нас есть квадрат ABCD
и прямоугольник EBFG. Вершины B прямоугольника и квадрата совпадают. Сразу оговоримся, что именование вершин фигур начинается с левого верхнего угла и продолжается по порядку по часовой стрелке.
Нам известно что AB = BC = CD = DA = 10 см., EB = FG = 3см., BF = GE = 4 см.
Тогда от сюда следует что новая фигура, образовавшаяся после выреза прямоугольника (AEGFCD) будет иметь следующие размеры:
AE = AB - EB = 10 - 3 = 7см.
EG = GE = 4 см.
GF = FG = 3 см.
FC = BC - BF = 10 - 4 = 6 см.
CD = 10 см.
DA = 10 см.
Ссумируем 7 + 4 + 3 + 6 + 10 + 10 = 40 см.
ответ 40 см.