В треугольнике ABC ∠С = 90°, AB = 5, tgA = 7/24. Найдите AC.
===========================================================
▪Первый теорема Пифагора ):tgA = BC/AC = 7/24Пусть ВС = 7х, АС = 24х, тогда Применим теорему Пифагора:АС² + ВС² = АВ²( 24х )² + ( 7х )² = 5²576х² + 49х² = 25625х² = 25х² = 1/25 ⇒ х = 1/5 = 0,2 Значит, АС = 24х = 24•0,2 = 4,8▪Второй Тригонометрия ):tg²A + 1 = 1/cos²Acos²A = 1/( tg²A + 1 ) = 1/( (7/24)² + 1 ) = 1/( 625/576 ) = 576/625cosA = ± 24/25 ⇒ ∠A - острый ⇒ cosA = 24/25cosA = AC/AB = 24/25 ⇒ AC = ( 5 • 24 )/25 = 24/5 = 4,8ОТВЕТ: 4,8
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9