М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
даша3464
даша3464
10.11.2020 19:06 •  Геометрия

В прямоугольном параллелепипеде АВСDА1В1С1D1 найти:

Угол между прямыми АВ и ОС1, где О – точка пересечения диагоналей основания;

Угол между прямой АВ1 и плоскостью АВС1, если ВВ1=ВС;

Угол между плоскостями АВС1 и АА1D;

Сечение, проходящее через точки О, С, параллельно прямой А1В.

5. В правильной призме АВСА1В1С1 найти:

Угол между прямыми АС1 и D1С;

Угол между прямой А1В и плоскостью АА1С;

Угол между плоскостями ВСА1 и ВВ1С1;

Расстояние между прямыми СС1 и А1В.

6. В основании прямой призмы АВСА1В1С1- равнобедренный прямоугольный треугольник с прямым углом В. Найти:

Угол между прямыми ВС1 и АС;

Угол между прямой ВС1 и плоскостью АА1С;

Угол между плоскостями АВ1С и АСВ;

Сечение, проходящее через центр описанной окружности основания, перпендикулярно ребру АВ.

7. В основании прямой призмы АВСDА1В1С1D1 – ромб, АВ=ВД. О – точка пересечения диагоналей нижнего основания. Найти:

Угол между прямыми АС и ВD1;

Угол между прямой АС1 и плоскостью ВВ1D;

Расстояние между прямыми А1А и В1D1;

Угол между плоскостями АВС и А1В1С.

8. В правильной четырёхугольной пирамиде РАВСD О–точка пересечения диагоналей основания. Найти:

Угол между прямыми РО и АВ;

Угол между прямой РС и плоскостью ВРD;

Угол между плоскостями АРD и ВРС;

Сечение, проходящее через точки В, О, параллельно прямой АР.

9. В правильной треугольной пирамиде РАВС найти :

Угол между прямыми МК и РС, где М –середина ребра АВ, К – середина высоты пирамиды;

Угол между прямой АР и плоскостью ВРС, если АО=hello_html_6a1c94eb.gifАР;

Угол между плоскостью АВС и плоскостью MВК;

Сечение плоскостью, проходящей через точку К, перпендикулярно АВ.

10. В пирамиде DАВС ребро DА перпендикулярно плоскости основания, АВ = ВС=АС. Найти:

Угол между прямыми DО и ВС, где О – центр основания;

Угол между прямой АВ и плоскостью АСD;

Угол между плоскостями АВD и ОАD;

Сечение плоскостью, проходящей через точку О параллельно грани АВD.

11. В пирамиде РАВСD в основании квадрат, О- середина ребра АВ, РО перпендикулярно плоскости основания. Найти:

Угол между прямыми АР и ВС;

Угол между прямой РС и плоскостью АВС;

Угол между плоскостями АРВ и РВС, если АР=АD;

Сечение плоскостью, проходящей через центр квадрата, перпендикулярно грани РDС.

12. В правильном тетраэдре РАВС найти:

Угол между прямыми АP и ВС;

Угол между прямой ВС и плоскостью АPС;

Сечение плоскостью, проходящей через середины рёбер АВ, АС и PС;

Угол между полученной плоскостью и плоскостью АВС.

👇
Открыть все ответы
Ответ:
thetrueraincorn
thetrueraincorn
10.11.2020
 Перпендикуляр, проведенный через середину боковой стороны равнобедренного треугольника,  делит высоту, проведенную к основанию, на отрезки 17 см и 8 см, считая от вершины.
Найти площадь и периметр данного треугольника.

Обозначим вершины треугольника А, В, С, причем АВ=ВС. 

Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности. 

Расстояние от О  до вершин А, В и С равно радиусу.  R=ВО=СО=17 см. 

∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒,  НС=15 см ( проверьте по т.Пифагора).

Отсюда АС=2•15=30 см

По т.Пифагора  AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см

Р=30+2•5√34=10•(3+√34) см

S=BH•CH=375 см²

4,5(9 оценок)
Ответ:
andrey455
andrey455
10.11.2020

Дан р\б треугольник ABC, высота AD. Рассмотрим получившийся треугольник ADC,  угол D - прямой, угол А - 45 градусов, следовательно угол С также 45 градусов (сумма углов в треугольнике - 180 градусов). Тогда получаем, что треугольник ADC - р\б (углы при основании равны), т.е. AD=DC=6. Но так как труг-к ABC также р\б, мы получаем противоречие и делаем вывод, что высота AD совпадает со стороной AB. Имеем: BC=AB = 6. По формуле находим площадь треуг-ка: 1\2 произведения катетов, т.е. получаем 1\2*6*6 = 18.

4,6(8 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ