Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Задача довольно простая. Тем более, чертёж уже имеется.
Итак, *решение*:
(очевидно, что перед нами равнобокая трапеция)
Опустим два перпендикуляра к неизвестной стороне из двух углов, равных 120°. Так как это перпендикуляры, то уголы, образованные ими и неизвестной стороной будут равны 90°, а углы, образованные ими и боковыми сторонами 120° - 90° = 30°.
Получим два прямоугольных треугольника, в которых один из острых углов равен 30°.
Катет, лежащий против угла в 30° равен половине гипотенузы. Ну... гипотенуза здесь 1, тогда катет 1 : 2 = 0,5. Аналогично находим катет и другого прямоугольного треугольника.
Отрезок, образованный основаниями этих высот будет равен 1, т.к. образуется прямоугольник, а у него противоположные стороны равны.
А чтобы найти четвёртую сторону, сло́жим это всё:
1 + 0,5 + 0,5 = 2.
ответ: 2.
всё :)