1. На прямой а откладываем отрезок АВ. Из точки В конца отрезка циркулем проводим окружность произвольным радиусом (около половины длины отрезка АВ). Из точки М пересечения отрезка АВ с окружностью этим же радиусом проводим засечки (пересечение дуг окружности) с обоих сторон отрезка АВ. Соединив эти засечки, получим прямую, перпендикулярную отрезку АВ, а, значит, и данной прямой. 2. Проделав предыдущую операцию на втором конце отрезка (А), получим второй перпендикуляр к прямой АВ. Отложим на полученных перпендикулярах с одной стороны отрезка АВ циркулем отрезки равной длины. Соединив полученные точки, получим прямую, параллельную прямойАВ. 3. Чертим окружность с центром О. Через центр этой окружности проводим прямую а. Продолжаем эту прямую за точку М пересечения с окружностью и на этом продолжении от точки пересечения М откладываем отрезок МА, равный радиусу нашей окружности. Теперь из центра О нашей окружности и из точки конца А, отрезка МА, радиусом, большим радиуса нашей окружности, делаем засечки с обоих сторон прямой. Соединив эти две засечки, получим прямую b, перпендикулярную нашей прямой в точке пересечения ее с нашей окружностью и делящую пополам отрезок ОА, то есть касательную к нашей окружности. 4. На прямой откладываем циркулем отрезок АВ, равный одной из данных сторон. Из точек концов этого отрезка радиусами R и R1, равными длинам двух других сторон проводим засечку (пересечение дуг окружностей этих радиусов). Соединив полученную точку отсечки с концами первого отрезка, получим искомый треугольник. 5. На прямой a откладываем отрезок АВ, равный данной нам стороне. Из точки конца этого отрезка откладываем угол, равный данному α, совместив одну из его сторон с полученным отрезком. На второй стороне угла откладываем отрезок, равный второй данной нам стороне. Соединив точки концов первого ивторого отрезков, получим искомый треугольник.
Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
сама не знаю!!!