площадь треугольника АВС равна сумме площадей треугольников ABO, BCO, ACO, т.е.
S(ABC)=52+30+74=156
S(ABC)=pr=(a+b+c)/2 *r=156
S(ABO)=c/2 *r=52
S(BCO)=a/2 *r=30
S(ACO)=b/2 *r=74
cr=104
ar=60
br=148
abcr^3=104*60*148
abc=104*60*148/r^3
p/a=156/60 p/a-1=(p-a)/a=156/60-1=96/60
p/b=156/148 p\b-1=(p-b)/b=156/148-1=8/148
p/c=156/104 p/c-1=(p-c)/c=156/104-1=52/104
pr=S r=S/p
S^2=p*(p-a)*(p-b)*(p-c)
S*r/(abc)=S*S/(abcp)=(p-a)*(p-b)*(p-c)/(abc)
r=(p-a)/a*(p-b)/b*(p-c)/c /S *(abc)
r=96/60*8/148*52/104 /156 *104*60*148/r^3=
=96*8*52*/(156r^3)
r^4=(96*8*52)/156=256
r=4
a=60:r=60:4=15
b=148:r=148:4=37
c=104:r=104:4=26
ответ: 15 дм, 37 дм, 26 дм - стороны
Согласно теореме Пифагора, второй катет
AC = √ (AB² - BC²) = √ (25² - 15²) = √ 400 = 20 см.
Тогда площадь треугольника
S = AC * BC / 2 = 20 * 15 / 2 = 150 см².
Радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 150 / (15 + 20 + 25) = 300 / 60 = 5 см.
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы, то есть в данном случае R = AB / 2 = 25 / 2 = 12,5 см.
Пусть точка Е - середина стороны АС. Тогда по теореме Пифагора
ВЕ = √ (ВС² + СЕ²) = √ (ВС² + (АС/2)²) = √ (15² + 10²) = √ 325 ≈ 18,03 см.