проведем радиусы в точки пересечения секущей ОР и ON
треугольник ОРN - равнобедренный, его высота ОК=3 является также и медианой, т.е. PK=KN=PN / 2 = 10 / 2 = 5
из прямоугольного треугольника OKN по теореме Пифагора определим радиус, он равен гипотенузе треугольника с катетами 3 и 5 см
R = OP = ON = OM = √(5^2 + 3^2) = √(25 + 9) = √34 см ~~ 5,8 см
ответ немного смущает, но видимо это "модификация" преподавателя, для защиты от списывания, наверное цифры у Сканави были другие, если конечно я не ошибся в "расчётах"
ВЕ = 0,5АВ
АС = 12 дм См. рис. Так как АВС - равнобедренный, то: АЕ = ЕС = 6 дм
------------------ Так как ВЕ = 0,5АВ, то:
Найти: АВ - ? АВ² = ВЕ²+АЕ² = 0,25АВ² + 6²
АВ² - 0,25АВ² = 36
0,75AB² = 36
AB = √48
AB = 4√3 (дм)
Проверим:
(4√3)² = (2√3)²+6²
48 = 12+36
48 = 48
ответ: 4√3 дм