Если рассмотреть ЛЮБОЙ треугольник, образованный высотой пирамиды, боковым ребром и его проекцией на плоскость основания, то легко видеть, что ВСЕ эти треугольники равны между собой (по катету - у них общий катет - высота пирамиды, и острому углу - углу наклона бокового ребра).
Отсюда сразу следует, что
1. Все боковые ребра равны.
2. Все проекции боковых ребер равны.
3. вершина пирамиды равноудалена от вершин многоугольника в основании.
Это и означает, что в основании ОБЯЗАТЕЛЬНО лежит многоугольник, вокруг которого МОЖНО описать окружность, и вершина пирамиды проектируется в центр этой окружности.
Ну очень сложно : смотрите, если радиус ВПИСАННОЙ в равносторонний треугольник окружности r, то высота 3*r, а это - сторона правильного шестиугольника. Правильный шестиугольник как-бы составлен из 6 равносторонних треугольников со стороной 3*r (ну, типа лепестков ромашки, 6 треугольников с общей вершиной), и их высоты как раз и будут искомым радиусом, то есть 3*r*корень(3)/2 (ну, найти высоту равностороннего треугольника по заданной стороне - это не трудно :)).
Итак, ответ 3*(4*корень(3))*корень(3)/2 = 18.