Подробно.
Обозначим трапецию АВСD. BC║AD, AB=CD.
Проведем из вершины С прямую, параллельную ВD, до пересечения с продолжением АD в точке К.
Противоположные стороны четырехугольника АСКD лежат на параллельных прямых, поэтому параллельны. АВСD – параллелограмм и DK=BC =>
АК=АD+BC.
По условию АС⊥ВD, поэтому угол АСК равен соответственному ему углу АОD.
∠АСК=90°.
Диагонали равнобедренной трапеции равны.
Треугольник АСК - прямоугольный равнобедренный. .
Высота равнобедренного треугольника в нем и медиана и равна половине гипотенузы:
СН=АК:2.
Площадь трапеции равна произведению высоты на полусумму оснований ( на среднюю линию)
126=CH•(BC+AD):2
Из найденного выше (BC+AD):2=CH, то
126=CH²=>
CH=√126=3√14 см
Из найденного выше средняя линия равнобедренной трапеции с взаимно перпендикулярными диагоналями равна её высоте.
ответ:3√14 см
Градусная мера полного угла равна 360*
Найдем град. меру данного нам угла:
360/3=120*
Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник.
2)
Сумма углов в любом треугольнике равна 180*
Определим на сколько частей ее разделили:
5+7+3=15 частей
найдем одну часть
180/15=12*
N=12*5=60*
B=12*3=36*
G=12*7=84*
3)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
(180-77)/2=51.5* - угол напротив основания
4)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
52*2= 104* - градусная мера обоих углов при основании
180-104=76* угол напротив основания
5)
Сумма углов в любом треугольнике равна 180*
С=180-32-60=88*
6)
Сумма острых углов в прямоугольном треугольнике равна 90*
90-81=9* - второй острый угол
7)
если в треугольнике есть тупой угол(больше 90*), то он тупоугольный
106*>90* - отсюда следует , что наш треугольник тупоугольный