Осталось только выяснить, сосуд имеет форму конуса вершиной вверх или вершиной вниз. V₀ = 1600 мл 1. Конус в классической ориентации - основание внизу, вершина вверху. Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2 Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k² Объёмы относятся как k³ Объём верхней пустой части сосуда составит V₁ = V₀*k³ = 1600/8 = 200 мл Объём жидкости, налитой до половины составит V₂ = V₀-V₁ = 1600-200 = 1400 мл 2. Конус перевёрнут - основание вверху, вершина смотрит вниз В этом случае заполнен только объём V₁ из пункта V₁ = 200 мл
1) пусть самая маленькая сторона х мм, тогда вторая сторона х+6, третья х+2*6, четвертая х+3*6. периметр переводим в мм 16см=160мм. х+х+6+х+2*6+х+3*6=160 4х+36=160 4х=160-36 4х=124 х=124/4=31 мм ответ первая сторона 31мм, вторая 31+6=37мм, третья 31+2*6=43мм, четвертая 31+3*6=49мм. 2) на 8мм : х+х+8+х+8*2+х+8*3=160 4х+48=160 4х=160-48 4х=112 х=112/4=28мм Первая сторона 278мм, вторая 28+8=36мм, третья 28+2*8=44мм, четвертая 28+3*8=52мм
3) на 10мм: х+х+10+х+2*10+х+3*10=160 4х+60=160 4х=160-100 4х=60 х=60/4=15мм первая 15мм, вторая 15+10=25мм, третья 15+2*10=35мм, четвертая 15+3*10=45мм
V₀ = 1600 мл
1. Конус в классической ориентации - основание внизу, вершина вверху.
Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2
Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k²
Объёмы относятся как k³
Объём верхней пустой части сосуда составит
V₁ = V₀*k³ = 1600/8 = 200 мл
Объём жидкости, налитой до половины составит
V₂ = V₀-V₁ = 1600-200 = 1400 мл
2. Конус перевёрнут - основание вверху, вершина смотрит вниз
В этом случае заполнен только объём V₁ из пункта
V₁ = 200 мл