Если трапеция описана около окружности, то суммы ее противоположных сторон равны. Сумма боковых сторон = 9a+16a+9a+16=50a, значит сумма оснований также = 50a. Радиус вписанной в трапецию окружности = 1/2 h = 12 см. Радиус можно найти по формуле r=S/p, где S - площадь, p - полупериметр. Найдем p, зная суммы противоположных сторон: p=50a+50a/2=50a S = a+b/2 * h, где а и b - основания; Сумма оснований = 50а, значит полусумма = 25а, следовательно S = 25a*24 Вернемся к формуле: 25a*24/50a=12 600a=600, значит а=1 Средняя линия - это полусумма оснований, значит, она равна = 25а=25 (см) ответ: 25 см.
S BB₁C₁C = ?
Работаем с 3-мя прямоугольниками. ABCD, ADC₁B₁, BCC₁B₁
Обозначим: АВ = CD = a, BC = AD = b, CC₁ = x
S BB₁C₁C = хb
SABCD = 12 = ab
SADC₁B₁ = 20 = b*DC₁ ( DC₁ ищем по т. Пифагора из ΔCDC₁
DC₁ = √(x² + a²)
20 = b*√(x² + a²)
рассмотрим систему уравнений:
20 = b*√(x² + a²)
12 = ab
Разделим 1-е уравнение на 2-е. Получим:
20/12 = √(x² + a²)/а, ⇒ 5/3 = √(x² + a²)/а | ², ⇒ 25/9 = (x² + a²)/а², ⇒
⇒25а² = 9(х² + а²), ⇒ 25а² = 9х² + 9а², ⇒16а² = 9х², ⇒ х² = 16а²/9, ⇒
⇒ х = 4а/3
Теперь смотрим S BB₁C₁C = хb = 4a/3*b = 4ab/3 = 4*12/3 = 16
ответ : S BB₁C₁C = 16см²