В прямоугольном треугольнике hpo с гипотенузой ho внешний угол при вершине h равен 120 , ho = 18 , найдите длину наименьшого катета ( с чертежами если можно )
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Прежде чем рассматривать 6 угольник. Давайте рассмотрим 4 угольник. Чуть позже объясню почему. (рисунок 1) Соединим середины сторон 4 угольника ABCD. Проведем диагональ AC Очевидно что MN-средняя линия треугольника ABC,откуда MN||AC, также PQ-cредняя линия треугольника ACD ,то PQ||AC. То выходит что MN||PQ. Анологично при проведении другой диагонали докажем что MQ||NP. То MNPQ-параллелограмм. Рассмотрим наконец 6 угольник проведем в нем диагональ D (2 рисунок) Она бьет его на 2 четырехугольника. На ней отметим точку S,являющуюся серединой диагонали. То из выше сказанного A1A2A3S-параллелограмм. Понятно , что для точек A1 A2 A3 cуществует одна и только одна точка H, для которой A1A2A3H-параллелограмм. А значит точка H совпадает с точкой S. H=S Тк второй такой точки не существует. Рассуждая анологично для второго 4 угольника. Покажем что M=S. А значит формально говоря: H=M ЧТД.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).