Недочет в условии: середины двух ПАРАЛЛЕЛЬНЫХ хорд. перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.