Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Построим параллелограмм АВСД проведем диагонали АС и ВД так что цент пресечения диагоналей О удален от стороны АВ на 2 см от стороны ВС на 3 см. Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см. Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней). Выразим из этой формулы строну а=S/h Сторона АВ=24/4=6 см Сторона ВС=24/6=4 см Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма) P=(AB+BC)*2=(6+4)*2=20 см
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: