М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
3profile1anna2
3profile1anna2
04.02.2020 17:39 •  Геометрия

12. В какой строке у всех недописанных слов
окончание -u?
а) воспоминание о юност..., нет мудрост..., цветет
среди осен...,
б) хранить в памят..., любовь к Отчизн..., родился в
рубашк...;
в) не выпало ни капл..., вижу в ребенк..., скажи
королев...​

👇
Ответ:
olgayabs76oxczon
olgayabs76oxczon
04.02.2020

в строке а

Объяснение:

)))

4,5(82 оценок)
Открыть все ответы
Ответ:
daniil6092002
daniil6092002
04.02.2020
Если рассматриваемый треугольник является прямоугольным, то можно использовать базовое определение тригонометрической функции синуса для острых углов. По определению синусом угла называют соотношение длины катета, лежащего напротив этого угла, к длине гипотенузы этого треугольника. То есть, если катеты имеют длину А и В, а длина гипотенузы равна С, то синус угла α, лежащего напротив катета А, определяйте по формуле α=А/С, а синус угла β, лежащего напротив катета В - по формуле β=В/С. Синус третьего угла в прямоугольном треугольнике находить нет необходимости, так как угол, лежащий напротив гипотенузы всегда равен 90°, а его синус всегда равен единице.

2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).

3
Воспользуйтесь для нахождения синуса угла двумя разными формулами расчета площади треугольника, в одной из которых задействованы только длины его сторон, а в другой - длины двух сторон и синус угла между ними. Так как результаты их будут равны, то из тождества можно выразить синус угла. Формула нахождения площади через длины сторон (формула Герона) выглядит так: S=¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С)) . А вторую формулу можно написать так: S=А*В*sin(γ). Подставьте первую формулу во вторую и составьте формулу для синуса угла, лежащего напротив стороны С: sin(γ)= ¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С) /(А*В)) . Синусы двух других углов можно найти по аналогичным формулам.
4,4(34 оценок)
Ответ:
davaispi
davaispi
04.02.2020
В плоскости основания точкой, равноудалённой от вершин треугольника является центр описанной окружности. Восстановленный из этой точки перпендикуляр к плоскости основания будет местом точек, равноудалённых от вершин треугольника.
Исходный треугольник прямоугольный, его гипотенуза
с² = a² + b² = 24² + 18² = 576 + 324 = 900
c = √900 = 30 дм
Гипотенуза является диаметром описанной окружности.
А₁С₁ = 30 дм
А₁О₁ = А₁С₁/2 = 15 дм
АТ = 25 дм
высоту исходной пирамиды h = О₁Т найдём по теореме Пифагора
О₁Т² + А₁О₁² = АТ²
h² + 15² = 25²
h² = 625-225 = 400
h = 20 дм
Объём полной пирамиды А₁Б₁С₁Т  найдём, высчислив площадь основания как половину произведения катетов. Высота пирамиды тоже известна.
V(А₁Б₁С₁Т) = 1/3*S(А₁Б₁С₁)*h = 1/3*1/2*24*18*20 = 8*9*20 = 1440 дм³
Все размеры срезаемой верхней части пирамиды в 2 раза меньше размеров исходной пирамиды, т.к. отрезки между середин рёбер являются средними линиями соответствующих треугольников
А₂Т = А₁Т/2
Б₂Т = Б₁Т/2
т.е. коэффициент подобия 
k = 1/2.
При этом площади тел относятся как k², а объёмы как k³
Объём срезаемой части пирамиды 
V(А₂Б₂С₂Т) = k³*V(А₁Б₁С₁Т) = 1/8*1440 =180 дм³
И объём усечённой пирамиды
V = V(А₁Б₁С₁Т) - V(А₂Б₂С₂Т) = 1440 - 180 = 1260 дм³

Основанием пирамиды является прямоугольный треугольник, катеты которого 24дм и 18дм. каждое боковое
4,6(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ