Задача. В правильной четырёхугольной пирамиде MABCD боковое ребро равно 8 и высота пирамиды равна 2√15. Найдите площадь сечения этой пирамиды плоскостью, прходящей через прямую BD и середину F ребра MC
А) Вектор, началом которого есть точка А, а концом - точка В, обозначается AB. Также вектора обозначают одной маленькой буквой, например a. Поэтому в задании "найдите координаты вектора bm если m медиана треугольника abc" заложена какая - то неточность.
Б) Длина средней линии треугольника, параллельной стороне AB, равна половине этой стороны. Находим длину АВ:
=2.236068. Тогда длина средней линии треугольника, параллельной стороне AB, равна 2,236068 / 2 = 1.118034.
В) Найдите координаты точки d если ADBC - параллелограмм. Находим координаты точки К - точки пересечения диагоналей параллелограмма. Диагонали параллелограмма точкой пересечения делятся пополам. Координаты точки К находим как середину диагонали АВ:
Точка Д является симметричной точке В относительно точки К.
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Поэтому в задании "найдите координаты вектора bm если m медиана треугольника abc" заложена какая - то неточность.
Б) Длина средней линии треугольника, параллельной стороне AB, равна половине этой стороны.
Находим длину АВ:
=2.236068.
Тогда длина средней линии треугольника, параллельной стороне AB, равна 2,236068 / 2 = 1.118034.
В) Найдите координаты точки d если ADBC - параллелограмм.
Находим координаты точки К - точки пересечения диагоналей параллелограмма.
Диагонали параллелограмма точкой пересечения делятся пополам.
Координаты точки К находим как середину диагонали АВ:
Точка Д является симметричной точке В относительно точки К.