Биссектриса угла треугольника делит сторону, которую пересекает, в отношении прилежащих сторон. Расмотрим треугольник АВН. АН:АВ= КН:ВК=16:20=4:5 Гипотенуза и один из катетов относятся как 5:4. Естественно предположить, что отношение всех сторон будет отношением сторон египетского треугольника , т.е. 5:4:3 Пусть коэффициент отношения будет х Тогда высота ВН=3х=36 см х=12 см АВ=5х=60 см АН=4х=48 см Отсюда АС=48*2=96 Р=60*2+96=216 см² -------------- Вариант решения через т. Пифагора: ВН²=АВ²-АН² 1296=25х²-16х²=9х² х=12 см АВ=60 см АС=48*2=96 см Р=216 см²
Итак. Сначала находим сторону НВ по теореме Пифагора. Это 4√3. Затем по свойствам проекции высоты на гипотенузу находим вторую ее часть - АН. (h/4√3=x/h) Высота у нас известна, это 4, следовательно развязываем пропорцию. Получается 16√3/3. Далее по теореме Пифагора находим сторону АС. Это 8√3/3. Известно, что косА это отношение прилежащего к углу катета на гипотенузу. В данном случае прилежащий катет - это АС, следовательно пропорция - АС/АВ. Получается пропорция 16√3/3:8√3/3. Дробь переворачиваем, сокращаем, и получаеся 1/2. Это табличное значение, известно что кос1/2 = 60 градусам.
земтст ичмдма46освжоі,.