а) Вписанный угол равен половине центрального, опирающегося на ту же дугу. ∠MAB - вписанный, ∠MOB - центральный, оба опираются на дугу MB.
∠MOB=2∠MAB =40° *2 =80°
∠MOB - равнобедренный (OM=OB, радиусы)
∠OMB=∠OBM =(180°-∠MOB)/2 =50°
б) Угловая величина дуги равна опирающемуся на неё центральному углу.
∪MB=∠MOB =80°
∪AB=∠AOB =180° (∠AOB - развернутый угол. Диаметр делит окружность на две равные дуги.)
∪AM=∪AB-∪MB =180°-80° =100°
∪MB < ∪AM < ∪AB
в) Вписанный угол равен половине дуги, на которую опирается. Вписанный угол AMB опирается на диаметр AB, а значит на дугу 180°.
∠AMB=180°/2 =90° (Вписанный угол, опирающийся на диаметр - прямой)
AM⊥MB
S=144π см²≈452,39 см²
V=288π см³≈904,78 см²
Объяснение:
Радиус шара R.
Сечение шара плоскостью АВС есть окружность. Пусть её центр будет точка Е. По условию АС⊥АВ, следовательно ΔАВС прямоугольный. Тогда ВС²=АВ²+АС²=6²+(6√2)²=6²+2(6)²=3(6)²⇒ВС=6√3 см
Так как ΔАВС прямоугольный, то точка Е середина гипотенузы ВС.
ВЕ=0,5ВС=0,5·6√3=3√3 см
Как известно, отрезок соеденяющий центр сферы с центром любой окружности, являющейся её сечением, есть перпендикуляр к плоскости этого сечения.
Рассмотрим ΔОВЕ. ∠ОЕВ=90°, ∠OBC = 30°, ВЕ=3√3 см.
R=OB=BE/cos∠OBC =3√3/cos 30°=3√3/(0,5√3)=6 см.
S=4πR²=4π·6²=144π см²
V=(4/3)πR³=(4/3)π·6³=288π см³
ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45°
AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат
Из треугольника C1DC:
sin C1CD = C1D/C1C
sin(45°)=4*корень(2) / C1C
С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8
Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8.
Площадь боковой поверхности равна сумме площадей ромбов и квадрата.
Sромба=AC*AA1*sin(30°)=8*8*1/2=32
Sквадрата=AB*AA1=8*8=64
Sбок=2*Sромба+Sквадрата=2*32+64=128