Когда нам дано, что подобны треугольники, то, чтобы записать пропорциональность сторон, имеется два 1)смотрим на рисунок и определяем пропорциональность исходя из признака. 2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы. Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым Т.к. подобны треугольники WMF и WAV, то записывается это так: WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню). Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон: WM/WA = WF/WV WM=WA*WF/WV = 26*19/24,7 = 20(дм). Теперь определим признак подобия. Их всего 3: 1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. 2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. 3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет. Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный. ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.