В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.