Каково взаимное расположение прямой и окружности, если радиус 4 см, а расстояние от центра окружности до прямой равно:а)3 см; б)4 см; в)5 см. Выполни чертежи схематично.
Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
2) Площадь по формуле Герона. S = √(p(p-a)(p-b)(p-c). Подставив данные, получаем: Треугольник АВС a(ВС) b(АС) c(АВ) p 2p S 6,4807 10,7703 6,4807 11,8659 23,7318 19,4165 cos A = 0,830949 cos B = -0,3809523 cos С = 0,830949 Аrad = 0,5899851 Brad = 1,961622457 Сrad = 0,5899851 Аgr = 33,8036561 Bgr = 112,3926878 Сgr = 33,803656/ Площадь равна 19,4165 кв.ед.