Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
Опять треугольники не подобны. Самая большая сторона в треугольнике АВС это АВ=10 см, Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см. Их отношения равны А₁В₁:АВ=15:10=1,5 Самая маленькая сторона в треугольнике АВС это ВС=5 см. Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см. Их отношения равны В₁С₁:ВС=7,5:5=1,5 Отношения совпадают.
Остаются отношения средних сторон. Средняя сторона в треугольнике АВС это АС=7 см, Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см, Их отношения равны А₁С₁:АС=9,5:7=1,(3571428) Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
ответ: S=4√6.