16; 16; 16. Цей рівнобедрений трикутник є рівностороннім
Объяснение:
Площа трикутника дорівнює ½ah. Знайдемо висоту. Вона ділить основу на дві рівні частини. Розглянемо один з отриманих прямокутних трикутників. У ньому гострий кут 30°. Знаємо, що tg30°=√3/3. Отже, висота поділена на половину основи попереднього рівнобедреного трикутника складає √3/3. Знаємо ще те, що Ця ж висота помножена на цю ж половину основи складає 64√3 см². Отже, ми отримали таку систему:(нехай половина основи = х, а висота - у)
х/у=√3/3;
ху=64√3
Є таке ноу-хау: метод множення:
х×х×у÷у=64√3×√3/3
х²=(64×√3×√3)/3
х²=64
х=√64=8
Підставимо х у рівняння ху=64√3
у=64√3/8=8√3
Тепер повернемося до прямокутного трикутника.
х=8, у=8
Знайдемо гіпотенузу (це бокова сторона рівнобедреного трикутника) Нехай вона дорівнює с.
За теоремою Піфагора, с²=х²+у²
с²=64+(8√3)²=64+64×3=256
с=√256=16
Тепер залишилось знайти основу. Ми знаємо, що х - це половина основи, тобто основа дорівнює 2х.
раз площади ∆ADC и ∆CDB относятся как 1 :3, то отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота) AD/DB = 1/3 ∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных) <A = <DCB (сходственные углы подобных треугольников) обозначим СВ как х тогда tgA = CD/AD = x/1 tgDCB = DB/CD = 3/x раз углы равны, то tgA = tgDCB x/1 = 3/x x^2 = 3 x = √3 tgA = x/1 = √3
<A = arctg(tgA) = 60 ° <B = 180 - 90 - <A = 30° ну а <C у нас прямой по условию
раз площади ∆ADC и ∆CDB относятся как 1 :3, то отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота) AD/DB = 1/3 ∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных) <A = <DCB (сходственные углы подобных треугольников) обозначим СВ как х тогда tgA = CD/AD = x/1 tgDCB = DB/CD = 3/x раз углы равны, то tgA = tgDCB x/1 = 3/x x^2 = 3 x = √3 tgA = x/1 = √3
<A = arctg(tgA) = 60 ° <B = 180 - 90 - <A = 30° ну а <C у нас прямой по условию
16; 16; 16. Цей рівнобедрений трикутник є рівностороннім
Объяснение:
Площа трикутника дорівнює ½ah. Знайдемо висоту. Вона ділить основу на дві рівні частини. Розглянемо один з отриманих прямокутних трикутників. У ньому гострий кут 30°. Знаємо, що tg30°=√3/3. Отже, висота поділена на половину основи попереднього рівнобедреного трикутника складає √3/3. Знаємо ще те, що Ця ж висота помножена на цю ж половину основи складає 64√3 см². Отже, ми отримали таку систему:(нехай половина основи = х, а висота - у)
х/у=√3/3;
ху=64√3
Є таке ноу-хау: метод множення:
х×х×у÷у=64√3×√3/3
х²=(64×√3×√3)/3
х²=64
х=√64=8
Підставимо х у рівняння ху=64√3
у=64√3/8=8√3
Тепер повернемося до прямокутного трикутника.
х=8, у=8
Знайдемо гіпотенузу (це бокова сторона рівнобедреного трикутника) Нехай вона дорівнює с.
За теоремою Піфагора, с²=х²+у²
с²=64+(8√3)²=64+64×3=256
с=√256=16
Тепер залишилось знайти основу. Ми знаємо, що х - це половина основи, тобто основа дорівнює 2х.
2х = 2×8=16