Дано: окружность, т.О - центр, ABCDEF - впис. прав. 6-угольник, АВ= 7 см, MNK - впис. прав. треугольник.
Найти: Рmnk.
Решение.
1) Радиус описанной окружности всегда равен стороне правильного шестиугольника, поэтому сразу делаем вывод, что радиус данной окружности равен стороне данного правильного шестиугольника. R=AB= 7 см.
2) Радиус описанной окружности правильного треугольника, выраженный через его сторону, равен:
R= √3/3 • а, где R - радиус, а "а" - сторона прав. треугольника.
Находим сторону треугольника ΔMNK.
7= √3/3 • MN;
MN= 7: √3/3;
MN= 7• 3/√3;
MN= 21/√3= 21√3/3= 7√3 (см)
3) Периметр треугольника MNK
Pmnk= 3MN= 3•7√3= 21√3 (см)
ответ: 21√3 см.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)