Высота к гипотенузе делит прямоугольный треугольник на два, ему подобных.
В одном задана АС (гипотенуза ЭТОГО) треугольника, и высота AD = 6 (один из катетов в ЭТОМ треугольнике). Значит второй катет 8, и вообще, треугольник египетский (6; 8; 10). Это означает, что и АВС, и ABD - тоже египетские треугольники, подобные (3; 4; 5).
cos(C) = 4/5;
Треугольник ABD имеет стороны (4,5; 6; 7,5) (подобие и один из катетов 6).
Значит BD = 4,5;
Можно найти и все остальные размеры, по тому же принципу
Пишем ( ; ; ), на втором месте ставим известный катет 10 (он должен стоять именно там, малый катет лежит напротив С),
получается ( ; 10; ), сравниваем с (3; 4; 5) и расставляем числа на пустые места, чтобы сохранить пропорцию 5/2 ( 7,5; 10; 12,5) :)
Конечно, это все игра - но полезная и веселая, и часто быстро найти ответ. Хотя все это можно было бы получить, просто используя полученное значение cos(C) = 4/5, откуда sin(C) = 3/5; tg(C) = 3/4 и так далее...
1.длина ребра куба АВСДА1В1С1Д1 равна 4 см. Вычислите длину радиуса окружности, вписаной в треугольник ДА1С1. 2.В равнобедренный треугольник АВС (АВ=ВС) вписана окружность. Касательная L к окружности, параллельна прямой АС, пересекает стороны АВ и ВС в точках Т и Р соответственно. Известно, что периметр четырехугольника АТРС равен 30 см и АС=12 см. Вычислите длину радиуса окружности. 3.В прямоугольнике АВСД, АВ =4 см, ВС= 5 см. Точка Р принадлежит отрезку ВС. В четырехугольник АРСД вписана окружность. Вычислите периметр четырехугольника вершинами которого являются точки А, Д, центр окружности и середина стороны АВ.
Пусть JH искомое расстояние. JH перпендикулярно BC. Поскольку JA перпендикулярна плоскости,то AH проекция перпендикуляра JH на плоскость. Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC. Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27 Найдем площадь треугольника по формуле Герона: p=(51+30+27)/2=54 S=sqrt(54*3*24*27)=324 Откуда : раз S=AH*BC/2 AH=324*2/27=24 И наконец по теореме Пифагора: JH^2=10^2+24^2=676=26^2 JH=26 ответ: JH=26
Высота к гипотенузе делит прямоугольный треугольник на два, ему подобных.
В одном задана АС (гипотенуза ЭТОГО) треугольника, и высота AD = 6 (один из катетов в ЭТОМ треугольнике). Значит второй катет 8, и вообще, треугольник египетский (6; 8; 10). Это означает, что и АВС, и ABD - тоже египетские треугольники, подобные (3; 4; 5).
cos(C) = 4/5;
Треугольник ABD имеет стороны (4,5; 6; 7,5) (подобие и один из катетов 6).
Значит BD = 4,5;
Можно найти и все остальные размеры, по тому же принципу
Пишем ( ; ; ), на втором месте ставим известный катет 10 (он должен стоять именно там, малый катет лежит напротив С),
получается ( ; 10; ), сравниваем с (3; 4; 5) и расставляем числа на пустые места, чтобы сохранить пропорцию 5/2 ( 7,5; 10; 12,5) :)
Конечно, это все игра - но полезная и веселая, и часто быстро найти ответ. Хотя все это можно было бы получить, просто используя полученное значение cos(C) = 4/5, откуда sin(C) = 3/5; tg(C) = 3/4 и так далее...