М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
UlyanaAleks
UlyanaAleks
13.01.2020 13:21 •  Геометрия

Найдите длину дуги окружности радиуса 15 см, если ее градусная мера равна

👇
Ответ:
си10
си10
13.01.2020

R= 15см

альфа=36°

Найти: l

Решение: l= П×R×альфа/180°

l = П×15×36/180= 3П

4,6(7 оценок)
Открыть все ответы
Ответ:
Сергей102007
Сергей102007
13.01.2020

В любой правильный многоугольник можно вписать единственную окружность.

Доказательство:

Надо доказать, что существует точка, равноудаленная от сторон многоугольника.

Пусть О - центр окружности, описанной около правильного многоугольника.

Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),

но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.

Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.

В правильном многоугольнике центры вписанной и описанной окружностей совпадают.

Докажем, что эта окружность единственная.

Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.

Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.

4,5(62 оценок)
Ответ:
Морожка
Морожка
13.01.2020

* * * * * * * * * * * * * * * * * * * * * * * * * *

В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см

ответ:    768 см².

Объяснение:  Пусть   ABCD  равнобедренная трапеция

AD и BC основания трапеции  ( AD  ||  BC  )   AD =39  см ,

ВA = CD =25 см  и   ∠ BAC = ∠ DAC .  

S(ABCD) = h*(AD+BC)/2   -?

--------------------------------------

∠ BCA= ∠ DAC как накрест лежащие углы  ( BC || AD , CA секущая) ,

следовательно  ∠ BCA= ∠ DAC =∠ BAC , т.е.  ΔBAC  равнобедренный

BA = BC =25 см     получили   BA  = CD =25 см .

Проведем  BB₁ ⊥ AD  и  CC₁ ⊥ AD .  BCC₁B₁ _прямоугольник  BB₁ =CC₁

B₁C₁ = BC =25 см  ;  Δ BB₁A = Δ CC₁D(гипотен. BA= CD  и катеты BB₁ =CC₁).

AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .

Из  Δ BB₁A по теореме Пифагора:

BB₁ =√(BA²  -AB₁² ) =√(25²  -7)² =√(625  -49) =√576=24 (см) .

* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *

S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).


В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая ст
4,8(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ