1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Объяснение:
Разместим внутри нашего квадрата маленькие квадратики, как показано на рисунке. Попробуем найти количество таких квадратиков и длину стороны каждого, чтобы общая сумма их периметров была равна 1992.

Обозначим число маленьких квадратиков вдоль стороны через N, а длину сторон маленьких квадратиков через A. Сумма периметров этих квадратиков будет равна 4N2A, а нам надо, чтобы эта сумма была равна 2020, т.е. 4N2A = 2020. Поскольку вдоль большого квадрата размещается N квадратиков со стороной A, то NA  1 и NA < 1. Значит, 4N > 1992 и 4N  2020 т.е. N  498. Взяв N = 500, A = 0, 002020, получим набор квадратиков, сумма периметров которых будет равна 0, 0020204500500 = 2020, что и требовалось.