ГЕОМЕТРИЯ Из точки О, которая является точкой пересечения медиан правильного треугольника ABC,проведен перпендикуляр OM к плоскости этого треугольника. Найдите угол наклона прямой MA к плоскости ABC, если OM=√3,AB=3√3
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Примем, что диагонали ромба равны: ВD=12 и АС=16. Сторона основания (ромба) находится по Пифагору: АВ=√(АО²+ВО²)=√(6²+8²)=10. Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96. В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины. Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8. Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6. Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4. В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS. Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3. Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3. ответ: V=204,8.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²