Рассмотрим первый рисунок, нужно найти сторону BC, если известны стороны AB и AC, а также треугольник ABC прямоугольный. Значит мы можем воспользоваться теоремой Пифагора: AB^2 = AC^2 +BC^2
Тогда, получаем 169 = 25+BC^2, тогда BC^2 = 169-25=144, BC = корень из 144 = 12
На втором рисунке нужно найти также BC. Запишем несколько теорем Пифагора: AB^2=BH^2+AH^2, BC^2 = BH^2+HC^2
Подставляем числа: 169x^2 = 24^2+AH^2, BC^2= 24^2+HC^2
Сложим уравнения, получим BC^2+169x^2 = 2*24^2 +AC^2 = 1152+100x^2
Тогда получаем BC^2 = 1152-69x^2 (так как икс не дан - нельзя найти BC)
Рисунок третий, теорема Пифагора: AB^2 = AC^2+BC^2
225 = 16x^2+9x^2, откуда 225 = 25x^2, x^2 = 9, значит x = 3 (т.к. стороны не могут иметь отрицательную длину), и тогда AC = 4x = 4*3 = 12, BC = 3x = 3*3 = 9
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.