Рассмотрим треугольник EFA У него даны две стороны Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник Следовательно третья сторона равна 8. Сторона CA =CF+FA Следовательно CA=12+8=20 Рассмотрим треугольники BCA и EFA Угол С и угол F прямые и они равны Угол А общие Следовательно эти треугольники подобны по двум углам y мы уже нашли ( он равен 8) Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4) Находим x -? Этой стороне подобна сторона EF
(заглавными буквами обозначаются вершины, а мелкими– стороны, тебе понадобится это) Итак, для начала найдём угол АВС, для этого из суммы углов вычитаем известные(в любом треугольнике 180°): угол АВС=180-75-35=70° теперь считаем угол DВС, так как ВD- биссектриса угла АВС, то угол АВС делим на 2(биссектриса делит угол на два равных угла): угол DВС= 70:2=35° Одно из свойств равнобедренного треугольника говорит о том, что если два противолежащих угла у основания равны– это равнобедренный треугольник. треугольник DВС- равнобедренный. Доказано.
Объяснение:
Сторона - это прямая. В первом случае таких прямых 5(3 прямых, образующих треугольники по 1 стороне от А и В)
Во втором случае таких прямых 3