В треугольнике ABC расстояние от центра описанной окружности до стороны BC равняется 10 см. найдите радиус описанной окружности, если BC равняется 48 см
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника.
Площадь правильного треугольника находят по формуле
S=(a²√3):4
S=(100√3):4=25√3
Тогда площадь треугольника, периметр которого нужно найти, равна
S:5= 5√3
Найдем его сторону из формулы площади правильного треугольника:
5√3=(a²√3):4
20=a²
a=√20=2√5 см
Р=3*2√5=6√5