М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
151020071
151020071
25.02.2022 08:43 •  Геометрия

Лінійка дає змогу 1Провести довільну пряму що проходить через дві точки 2провести пряму що проходить через дану точку 3провести довільну пряму відрізок промінь 4провести довільну пряму побудувати пряму що проходить через дану точку і пряму що проходить через дві дані точки

👇
Ответ:
angel66613666
angel66613666
25.02.2022

4…………………………….……

4,4(87 оценок)
Открыть все ответы
Ответ:
qq302894
qq302894
25.02.2022

АД =  \frac{8.2}{\sqrt{3} }

Периметр ΔАОД = 8,2√3

Объяснение:

ΔАОД - равнобедренный (ОА=ОД=R), т.к. АВ=ВД (В - середина АД), то ОВ - медиана. Медиана в равнобедренном Δ является также высотой ⇒ОМ⊥АД.

Четырёхугольник АОДМ: Диагонали перпендикулярны, а если диагонали выпуклого четырехугольника взаимно перпендикулярны, то суммы квадратов его противолежащих сторон равны:

АО²+ДМ²=ОД²+АМ²

АО=ОД=R ⇒ R²+ДМ²=R²+АМ²

⇒ДМ=АМ ⇒ Четырёхугольник АОДМ - ромб,

ОА=ОД=ДМ=АМ=R

Рассмотрим ΔАОВ(∠В=90°). ОВ=1/2ОМ (св-во диагоналей ромба)

ОМ=1/2 ТМ ⇒ ОВ=1/4 ТМ = 1/4* 16,4 = 4,1 см

∠О=30°.

ОА=R=ОВ/cos 30° = \frac{4.1*2}{\sqrt{3} } = \frac{8.2}{\sqrt{3} }

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

АВ=1/2 ОА = 1/2 * \frac{8.2}{\sqrt{3} }  = \frac{4,1}{\sqrt{3}} , т.к. В - середина АД, то

АД = 2*АВ= \frac{8.2}{\sqrt{3} }

Периметр ΔАОД = 2*ОА+АД= 2*\frac{8.2}{\sqrt{3} } + \frac{8.2}{\sqrt{3} } = 8,2√3


Дорогие геометрики мне, аминь... ​
4,6(23 оценок)
Ответ:
PUPOK2101
PUPOK2101
25.02.2022

a)

В единственной картинке.

b)

Так как хорда SF — равна радиусу, то треугольник OFS, образованный двумя радиусами и хордой SF — правильный.

То есть: OF \equiv FS \equiv OS.

HL — диаметр, перпендикулярный хорде SF, то есть: OM ⊥ SF.

То есть отрезок OM — высота, проведённая к основанию, а в правильном треугольнике, высота, биссектриса и медиана, проведённые к основанию — одно и то же.

То есть OM — медиана, что и означает, что:

FM \equiv MS = FS/2;\\MS = 8.2 = FS = 8.2*2 = 16.4cm.

Вывод: FS = 16.4см.

c)

Так как OM — высота треугольника OFS, проведённая к основанию, то треугольники OFM & OSM — прямоугольные, так как каждый из них имеет прямой угол (<OMF; <OMS).

OF — гипотенуза, FM — катет, чтобы найти второй катет, то есть OM, используем теорему Пифагора:

\displaystyle\\b = \sqrt{c^2-a^2}\\\\OM = \sqrt{OF^2-FM^2}\\\\OF = 16.4; FM = 8.2 \Rightarrow\\\\OM = \sqrt{16.4^2-8.2^2}\\OM = \sqrt{201.72} = 14.2cm.

Диаметр равен половине отрезка OM, то есть: D = 14.2*2 = 28.4cm.

Вывод: Диаметр HL равен 28.4см.

d)

Как я говорила ранее — треугольник OSF — правильный, то есть все стороны равны, то есть:

P = 3a \Rightarrow\\P = 3*16.4 = 49.2cm.

Вывод: Периметр треугольника OSF равен 49.2см.


3. В окружности с центром в точке О к хорде SF, равной радиусу окружности, перпендикулярно проведен
4,4(46 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ