Объяснение:
1)На рисунке DC и DB касательные к окружности с центром A, ∠САВ=124°.Найти ∠CDB.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания. ∠АСD= ∠АВD=90°.
АВDС- четырехугольник. Сумма углов четырехугольника 360°.
∠CDB=360°-90°-90°-124°=56°
2)Из одной точки круга проведен диаметр и хорду, которая равна радиусу круга. Найдите угол между ними
Пусть диаметр АВ, хорда АС, О-центр окружности. Известно, что ОА=СА.
ΔОСА-равносторонний, т.к. ОА=ОС как радиусы, ОА=СА по условии.
Значит все углы равны 180°:3=60 °
Угол между хордой и диаметром 60°
Cм. Объяснение.
Объяснение:
1) Гипотенуза ОМ треугольника ОАМ равна гипотенузе ОМ треугольника ОВМ (является общей стороной обоих треугольников);
2) катет МА треугольника ОАМ равен катету МВ треугольника ОВМ - согласно условию;
3) следовательно, ОА = ОВ и ΔАОМ = ΔОВМ, согласно третьему признаку равенства треугольников (если три стороны одного треугольника равны трём сторонам другого треугольника, то такие треугольники равны).
4) В равных треугольниках против равных сторон лежат равные углы, следовательно, против равных сторон МА и МВ лежат и равные углы:
∠АОМ = ∠ВОМ, а этом значит, что луч ОМ является биссектрисой угла О, так как делит его пополам.
ПРИМЕЧАНИЕ к п.3.
В дополнение к 3 основным признакам равенства треугольников используются также и 4 признака равенства прямоугольных треугольников; в частности, согласно 4-ому признаку: если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники равны.
2sin(альфа)
Объяснение: