Через сторону ВС ромба ABCD проведена плоскость альфа, удаленная от стороны AD на расстояние 5 корней из 2ух см. Длина стороны ромба 20 см, острый угол ромба равен 30°. Найдите градусную меру угла между плоскостью ромба и плоскостью альфа
Биссектрисы острых углов пересекаются под углом 135°(!)
Проведя 2 биссектрисы острых углов, мы получим тупоугольный треугольник, одна из сторон которого будет гипотенузой исходного прямоугольного. а 2 других стороны - отрезками, принадлежащими биссектрисам.
Сумма острых углов прямоугольного треугольника равна 90°, так как биссектриса делит угол на 2 равных угла, то получается, что во вновь образованном тупоугольном треугольнике сумма углов, прилежащих к "бывшей" гипотенузе, равна 90°:2=45°. А третий угол - угол пересечения биссектрис - равен 180°-45°=135°, что и требовалось доказать.
Не могут пусть прямоугольный треугольник АВС (С-прямой) биссектрисы пересекаются в точкеО 1.рассмотрим треугольник АОВ, образованный биссектрисами острых углов сумма острых углов 90гр (в треугольнике АВС), значит сумма углов ОАВ и ОВА -45гр, значит угол между биссектрисами угол АОВ=135гр 2. рассмотрим треугольник обрзованный биссектрисами прямого и одного из острых углов . Прямой угол делим пополам 90:2=45ГР, острый будет еще меньше, значит третий угол будет больше 90гр. ответ не могут, биссектрисы пересекаются по тупым углом
Биссектрисы острых углов пересекаются под углом 135°(!)
Проведя 2 биссектрисы острых углов, мы получим тупоугольный треугольник, одна из сторон которого будет гипотенузой исходного прямоугольного. а 2 других стороны - отрезками, принадлежащими биссектрисам.
Сумма острых углов прямоугольного треугольника равна 90°, так как биссектриса делит угол на 2 равных угла, то получается, что во вновь образованном тупоугольном треугольнике сумма углов, прилежащих к "бывшей" гипотенузе, равна 90°:2=45°. А третий угол - угол пересечения биссектрис - равен 180°-45°=135°, что и требовалось доказать.