М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Дзера1111
Дзера1111
01.06.2020 16:18 •  Геометрия

Відстань між центрами двох кіл дорівнює 15 см. Скільки спільних точок мають ці кола, якщо їх радіуси дорівнюють 8см і 11 см?

👇
Открыть все ответы
Ответ:
ako91545
ako91545
01.06.2020
Для начала, давайте разберемся с основными понятиями и свойствами треугольников.

У нас есть два треугольника: треугольник abc и треугольник xyz. Обозначения a, b, c, x, y, z соответствуют вершинам каждого треугольника.

В условии задачи сказано, что угол с треугольника abc равен углу z треугольника xyz. Обозначим этот угол как C или Z соответственно.

Итак, у нас есть следующая информация:

угол C (из треугольника abc) = угол Z (из треугольника xyz)

Теперь нам нужно сравнить площади треугольников abc и xyz, и найти отношение их площадей. Для этого воспользуемся формулой площади треугольника.

Площадь треугольника вычисляется по формуле:
Площадь = (1/2) * основание * высота

Допустим, основание одинаково для обоих треугольников. Обозначим это общее значение как b.

Поэтому площади треугольников abc и xyz будут пропорциональны их высотам. Обозначим высоты треугольников как h1 и h2 соответственно.

Теперь мы можем записать отношение площадей треугольников:

отношение площадей треугольника abc к площади треугольника xyz = (площадь треугольника abc) / (площадь треугольника xyz)

Отношение площадей будет равно отношению высот треугольников, так как основание одинаково:

отношение площадей треугольника abc к площади треугольника xyz = (высота треугольника abc) / (высота треугольника xyz)

Теперь вопрос состоит в том, как связаны высоты треугольников с углами C и Z.

Мы можем использовать тригонометрические функции для определения соотношений между углами и сторонами треугольника:

В треугольнике abc мы имеем соотношение между углом C и сторонами a, b и c:

cos(C) = (сторона a) / (сторона c)

Аналогично, в треугольнике xyz имеем соотношение между углом Z и сторонами x, y и z:

cos(Z) = (сторона x) / (сторона z)

Так как угол C равен углу Z, мы можем записать:

cos(C) = cos(Z)

Теперь в какой-то степени мы можем отыскать высоту треугольника abc, связанную с углом C и сторонами a и c. Она будет равна:

высота треугольника abc = (сторона a) * cos(C)

Аналогично, высота треугольника xyz, связанная с углом Z и сторонами x и z, будет равна:

высота треугольника xyz = (сторона x) * cos(Z)

Теперь мы можем записать отношение площадей треугольников по высотам:

отношение площадей треугольника abc к площади треугольника xyz = [(сторона a) * cos(C)] / [(сторона x) * cos(Z)]

Таким образом, отношение площадей треугольников abc и xyz зависит от значений сторон a, c, x и z, а также от углов C и Z.

Полагая, что все остальные стороны и углы треугольников известны, мы можем найти конкретное значение этого отношения, используя данные значения.

Однако, без явных числовых значений или других дополнительных условий невозможно дать точный ответ на вопрос о конкретном отношении площадей треугольников abc и xyz. Необходима дополнительная информация для полного решения этой задачи.
4,8(86 оценок)
Ответ:
Ольга12919
Ольга12919
01.06.2020
Для решения данной задачи нам потребуется некоторое количество знаний из геометрии. Позвольте мне объяснить шаги, необходимые для решения этой задачи.

1. Начнем с построения данной треугольной пирамиды.

Пусть a, b и c - вершины правильной треугольной пирамиды ABCD. Сторона основания AB = BC = AC = 8 дм, а боковое ребро AD = 10 дм.

Выглядеть эта пирамида будет примерно так:

A
/ \
B---C
| |
D---D

2. Следующим шагом будет построение сечения, проходящего через середины ребер AD и BC и параллельного ребру DC.

Назовем точку на ребре AD, которая делит его пополам, E. Аналогично, назовем точку на ребре BC, которая делит его пополам, F.

При проведении сечения через точки E и F получится плоскость, которая будет пересекать пирамиду.

Выглядеть плоскость сечения будет примерно так:

A-------E-------C
| |
| |
D-------F-------D

3. Теперь, чтобы найти площадь сечения, нужно найти площадь получившегося четырехугольника EDCF. Для этого, нам нужно найти длины его сторон.

Длина стороны EF можно найти при помощи теоремы Пифагора. Так как ABC - правильный треугольник, то EF равно половине бокового ребра AB, то есть EF = 4 дм.

Также, AE и CF равны половине длины основания, то есть AE = CF = 4 дм.

Длина стороны DC равна длине бокового ребра AD минус длина бокового ребра DE, то есть DC = AD - DE = 10 дм - 4 дм = 6 дм.

4. Последний шаг - вычисление площади четырехугольника EDCF.

Чтобы вычислить площадь четырехугольника, можно разделить его на два прямоугольных треугольника EDF и ECF и найти сумму их площадей.

Площадь прямоугольного треугольника EDF можно найти по формуле S = (1/2) * a * b, где a и b - длины катетов треугольника. В нашем случае a = EF = 4 дм, b = DF = DC = 6 дм.

Таким образом, площадь треугольника EDF будет: S_EDF = (1/2) * 4 дм * 6 дм = 12 дм².

Аналогично, площадь треугольника ECF будет: S_ECF = (1/2) * 4 дм * 6 дм = 12 дм².

Наконец, суммируем площади этих двух треугольников, чтобы получить площадь четырехугольника EDCF: S_EDCF = S_EDF + S_ECF = 12 дм² + 12 дм² = 24 дм².

Таким образом, площадь сечения, проходящего через середины ребер AD и BC и параллельного ребру DC, равна 24 квадратным дециметрам.
4,6(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ