М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лиза5и6класс
Лиза5и6класс
23.04.2020 00:56 •  Геометрия

90 за решение! с точки к прямо проведено две наклонные,длинна которых 15 и 20 см.,а длинна проекций относится как 9: 16.найти расстояние от точки к прямой!

👇
Ответ:
LollyPopsi
LollyPopsi
23.04.2020
Проекция наклонной, проведенной из некоторой точки  к прямой - это отрезок, соединяющий основание наклонной и основание перпендикуляра к прямой, опущенного из этой же точки.
Поскольку наклонные проведены из одной точки, то и перпендикуляр из этой же точки - это расстояние от точки до прямой.
Может быть два варианта проведения наклонных:
а) наклонные проведены по разные стороны от перпендикуляра и b) наклонные проведены по одну сторону от перпендикуляра.
Решение и ответ в обоих случаях одинаковые.
Имеем два прямоугольных треугольника с гипотенузами (наклонными) 15см и 20см и катетами (проекциями соответствующих наклонных).
Эти катеты равны 9х и 16х. Второй катет у этих треугольников общий - это перпендикуляр проведенный из данной точки к основанию. Тогда из двух прямоугольных треугольников с общим катетом - высотой нашего треугольника "h" по Пифагору имеем: : h²=15²-(9x)² (1) и h²=20²-(16x)²  (2). Приравнивая (1) и (2) имеем:
225-81х²=400-256х², отсюда 175х²=175 и х=1.
Значит отрезки основания исходного треугольника равны 9см и 16см.
Тогда из любого уравнения находим искомое расстояние:
h=√(225-81)=√144=12.
ответ: искомое расстояние равно 12см.

90 за решение! с точки к прямо проведено две наклонные,длинна которых 15 и 20 см.,а длинна проекций
4,5(72 оценок)
Открыть все ответы
Ответ:
hdn12
hdn12
23.04.2020
Нехай трикутник АВС (кут С = 90градусів), кут В = 53 градусів, АВ = 12см
Проведемо з прямого кута С до гіпотенузи висоту СК.
Знайдемо Кут А, так як прямий кут це 90 градусів, то кут А буде дорівнювати:
кут С = 90градусів - 53 градусів =37 градусів.
Тепер дещо про синусів и косинусів

Синус кута - це відношення протилежного катета до гіпотенузи
Косинус кута - відношення прилеглого катета до гіпотенузи.
Звідси,
\cos B= \frac{BC}{AB} \\ BC=\cos B\cdot AB=\cos53\cdot 12\approx 7.2218
Тоді другий катет
AC= AB\cdot \sin 53а=12\cdot \sin53а\approx 9.5836
З прямотутного трикутника СКВ
CK=BC\cdot \sin 53а=7.2218*\sin53\approx 5.7676
Площа прямокутного трикутника обчислюється за формулою
S= \frac{AC+BC}{2} = \frac{7.2218+9.5836}{2} \approx 34.6054

Розв'яжіть прямокутний трикутник abc(угол c=90) за відомими елементами: ab=12см , кут b=53
4,8(61 оценок)
Ответ:
buh64
buh64
23.04.2020
Нехай трикутник АВС (кут С = 90градусів), кут В = 53 градусів, АВ = 12см
Проведемо з прямого кута С до гіпотенузи висоту СК.
Знайдемо Кут А, так як прямий кут це 90 градусів, то кут А буде дорівнювати:
кут С = 90градусів - 53 градусів =37 градусів.
Тепер дещо про синусів и косинусів

Синус кута - це відношення протилежного катета до гіпотенузи
Косинус кута - відношення прилеглого катета до гіпотенузи.
Звідси,
\cos B= \frac{BC}{AB} \\ BC=\cos B\cdot AB=\cos53\cdot 12\approx 7.2218
Тоді другий катет
AC= AB\cdot \sin 53а=12\cdot \sin53а\approx 9.5836
З прямотутного трикутника СКВ
CK=BC\cdot \sin 53а=7.2218*\sin53\approx 5.7676
Площа прямокутного трикутника обчислюється за формулою
S= \frac{AC+BC}{2} = \frac{7.2218+9.5836}{2} \approx 34.6054

Розв'яжіть прямокутний трикутник abc(угол c=90) за відомими елементами: ab=12см , кут b=53
4,5(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ